63. Asymmetric Synthesis of a-Hydroxy-Esters *via* **Ester Enolates with Very High Diastereoselectivity**

by **Remo Gamboni** and **Christoph Tamm'**

Institut für Organische Chemie der Universität, St. Johanns-Ring 19, CH-4056 Basel

$(11.11.86)$

The α -hydroxylation of chiral esters of 3-phenylpropionic acid by MoO₅. Py. HMPT was optimized to 98% **de** and 73% yield by systematic variation of the reaction conditions. The addition of at least **3** equiv. of K(sec-BuO) proved to be essential.

Chiral α -hydroxy-carboxylic acids are important starting materials and intermediates for the synthesis of optically active natural products. In [l], we reported on the first results of the asymmetric synthesis of optically pure **2-hydroxy-3-phenylpropionates** of chiral alcohols (R^*OH) derived from $(+)$ -camphor $(cf. [2]$ $[3]$) by hydroxylation with MoO_s. Py \cdot HMPT (= MoOPH) [4]. Since then, the α -acetoxylation of O-silylated camphorsulfonamide esters with Pb (OAc), *[5]* and the hydroxylation of oxazolidone carboximide enolates [6] and of amide enolates derived from phenylacetic acid and *(+)-(S)-2-* (hydroxymethy1)pyrrolidine [7] by **3-phenyl-2-(phenylsulfonyl)oxaziridine** with high diastereoselectivities have been reported.

Here, we report on further results of our investigations of the hydroxylation with **3-phenyl-2-(phenylsuIfonyl)-oxaziridine** or with MoOPH [S]. With the latter reagent, a remarkable improvement of the diastereoisomeric excess up to 98% with a yield of isolated products of 73 % has been achieved.

For the hydroxylation with MoOPH, the ester enolates must first be generated. It **is** known that both the (Z) - and (E) -isomers of the enolates are accessible by changing the conditions of deprotonation, *i.e.* by the use of lithium isopropylcyclohexylamide $($ = LICA $)$ and LICA/HMPT (= hexamethylphosphoric triamide) as base in THF, respectively *(Scheme I).*

For steric reasons, the reagent attacks the enolates from the less hindered side of the enolate, *i.e.* the *Re-face* in the case of the (Z) -enolates and the *Si*-face in the case of the (E)-enolates leading to the *(2R)-* and (2S)-hydroxy-esters, respectively *(Scheme 2).*

Best results were obtained with the esters of the alcohols **1** and **2. As** shown in *Table 1,* remarkable dependence of the $(R)/(S)$ -ratio from the base used was noted for the esters of these alcohols with 3-phenylpropionic acid. To improve the diastereoselectivity of the hydroxylation and to avoid the toxic HMPT, reaction time, temperature, and base were varied.

Exper.	Alcohol used for esterification	Base used for deprotonation	Reaction time	Temp.	$(R)/(S)$ - Ratio ^a)	Yield ^b) [%]	
	2	1.2 equiv. Li(i-Pr) ₂ N	5 h	-78°	43:57	23	
	2	1 equiv. LICA	3 h	-78°	60:40	29	
3		2 equiv. LICA	2 _h	$-78°$	20:80	80	
4		2 equiv. LICA	8 h	-78°	33:67	65	
5		2 equiv. LICA after	2 h	-52°	43:57	57	
		deprotonation $+20\%$ HMPT					
6	$\mathbf{2}$	2 equiv. LICA after	1 h	-52°	82:18	$60(55)^{c}$	
		deprotonation $+20\%$ HMPT					
	2	2 equiv. Li(i -Pr) ₂ N after	1 h	-52°	28:72	35	
		deprotonation +20% DMPU					
8	1	2 equiv. LICA/HMPT	2 h	-52°	14:86	50	
9	2	2 equiv. LICA/HMPT	2 _h	-52°	7:93	50 $(40)^c$	
10		2 equiv. LHMDS	53 h	-52°	9:91	30	
11	2	1 equiv. KHMDS	50 min	-78°	23:77	20	
12	2	2 equiv. KHMDS	1 h	-78°	68:32	80	
13	$\mathbf{2}$	3 equiv. KHMDS	45 min	-62° to -52°	57:43	62	
$\overline{14}$	2	10 equiv. KHMDS	30 min	-78°	41:59	40	

Table **1.** *Hvdroxvlation of Esters of 3-Phenvlpropionic Acid with MoOPH Complex*

^a) Determination of the absolute configuration by hydrolysis to 2-hydroxy-3-phenylpropionic acid.
^b) Total of both diastereoisomers determined by HPLC analysis.

Total of both diastereoisomers determined by HPLC analysis.

') Isolated yield of the major diastereoisomer.

The hydroxylation of the (Z) -enolate derived from the alcohol 1 *(Exper. 3)* did not lead to the expected $(2R)$ -, but to the $(2S)$ -diastereoisomer in excess. Relatively low diastereoselection was observed during hydroxylation of the (Z) -enolate derived from the alcohol *2 (Exper. 1, 2,* and *4).* This fact demonstrated that 2 equiv. of the base are required for obtaining a good chemical yield. If 20% HMPT was added after deprotonation of the ester of alcohol **2,** the (2R)-isomer was accessible in a ratio of 82:18 with the (2s)-isomer *(Exper.* 6). The same trend was observed in the case of the ester derived from alcohol **1** *(Exper. 5).* The replacement of HMPT by DMPU **(1,3-dimethyl-3,4,5,6-tetra**hydro- $2(1H)$ -pyrimidinone) did not lead to any improvement; diastereoselection and yield were rather lower. In contrast to the results of the (Z) -ester enolates, the hydroxylations of the (E)-ester enolates from **1** and **2** showed a very high diastereoselection with a (R)/(S)-ratio of **14:86** and 7:93, respectively *(Exper.8* and *9).*

A dramatic change of diastereoselection was observed using LHMDS (= lithium hexamethyldisilazide) [9] as base *(Exper. 10).* Unfortunately, the reaction was too slow to be of any synthetic value. After 53 h, the reaction was quenched by addition of 2N HCl. *Exper.* $11 - 14$ demonstrate that no selectivity was observed using simply the stronger base KHMDS ($=$ potassium hexamethyldisilazide). The ratio of the two diastereoisomers depends also on the amount of KHMDS used.

Despite these results, KHMDS was chosen as base to demonstrate the possible influence of a chiral alkoxide *(Table 2).* The addition of 1 equiv. of the potassium alkoxide of *2 (Exper.* I) caused a change of diastereoselection from 2:l to 1:2. More interesting was the fact that the chirality of potassium menthoxide *(Exper.2* and *3)* exerted little or no influence, since both enantiomers of potassium menthoxide showed *ca.* the same ratio of the two diastereoisomeric hydroxy-esters.

Exper.	Alkoxides ^d)	Reaction time	Temp.	$(R)/(S)$ - Ratio ^a	Yield ^b) [%]
\mathcal{I}	l equiv. KOR^e	90 min	-78°	32:68	72
2	1 equiv. $(+)$ -Potassium menthoxide	30 min	-52°	13:87	76
3	1 equiv. $(-)$ -Potassium menthoxide	40 min	-52°	18:82	81
$\boldsymbol{4}$	l equiv. $K(sec-BuO)$	45 min	-52°	5:95	71 $(64)^c$
5	1 equiv. KOR^{\dagger})	$20 \text{ min} - 2 \text{ h}$	-52°	5:95	$64 - 90$
6	2 equiv. $K(sec-BuO)$	75 min	-52°	4:96	51
7	3 equiv. $K(sec-BuO)$	2h20min	-52° to -46°	1:99	71 $(66)^c$
8	8 equiv. $K/sec-BuO$	40 min	-52° to -46°	1:99	$80(73)^{c}$

Table 2. *Diastereoselective Hydroxylation of 3-Phenylpropionate of* 2 *with MoOPH Complex Using 2 equiv.* **KHMDS** as Base and Different Alkoxides

''-')See *Table I.*

d, The alkoxide was prepared by adding *x* equiv. of the alcohol to $x + 2$ equiv. of KHMDS.

 e) R¹OH = 2.

') R^2 = Et, i-Pr, Bu, t-Bu.

These results gave rise to an experiment in which 1 equiv. of $K(sec-BuO)$ (*Exper.4*) was added during deprotonation. The ratio of 5:95 as well as the isolated yield of 64% were very promising. By using KHMDS as base and $K(sec-BuO)$, we even could attain a better yield and diastereoselection than by using LICA/HMPT as base [1].

The observation that the diastereoselection of the hydroxylation is enhanced by the addition of K(sec-BuO) led us to test further alkoxides. *Exper.* 5 demonstrated that the 4 different potassium alkoxides used exerted the same effect. By raising the amount of added $K(sec-BuO)$, nearly pure (2S)-hydroxy-ester was obtained in an isolated yield of 73% *(Exper.* 6-5). The addition of K(sec-BuO) seems to change the environment of the enolate in such a way that the Mo reagent can better distinguish between the two faces of the enolate. The effect of $K(sec-BuO)$ requires the presence of both the shielding group and the base KHMDS, since after replacement of KHMDS by LICA in Exper. 4 of Table 2, only a $(R)/(S)$ -ratio of 29:71 was found. This ratio is nearly the same as observed in the experiment with LICA without the addition of an alkoxide *(cf. Exper.4, Table 1)*. Furthermore, the replacement of the shielding sulfonamide group by a neopentyl ether $(t-BuCH₂O)$ showed absolutely no effect on the diastereoselectivity of the reaction after addition of 1 equiv. of $K(\sec - BuO)^1$.

In the course of these investigations, *Davis et al.* [10] reported that chiral lactones could be hydroxylated by **3-phenyl-2-(phenylsulfonyl)oxaziridine** with a higher diastereoselectivity than by MoOPH. In contrast to the observations of *Davis et aI.,* but in agreement with the results reported by *Evuns et ul.* [6] we found MoOPH to be more stereoselective. Using LICA as base, we obtained a $(R)/(S)$ -ratio of approximately 89:11. Side reactions, however, prevented the isolation of the product and the determination of the exact ratio2). After replacement of LICA by KHMDS, neither diastereoselection nor side reactions were observed at -78° ((R)/(S)-ratio 45:55).

The final problem, the removal of the chiral auxiliary group, was solved in a satisfactory manner. By treatment of the α -hydroxy-esters with KOH in MeOH/H₂O at 20 $^{\circ}$ the α -hydroxy-acid was obtained without any notable racemization.

Financial support of these investigations by the *Swiss NutionulScience Foundution* is gratefully acknowledged.

Experimental Part

General. THF was dried by distilling over LiAIH₄. The org. extracts were dried over Na₂SO₄ and evaporated under reduced pressure below 50". The m.p. are corrected. HPLC: *LiChrospher* column *Si100 5* pm *(Merek)* using AcOEt/pentane 15:85. TLC: silica gel 60 F₂₅₄ (Merck); detection with 10% H₂SO₄ soln. in MeOH or KMnO₄ soh. [ale: *Perkin-Elmer* model *141* polarimetcr. **IR:** *Perkin-Elmer* model *177* grating spectrometer. NMR: *Vurian EM 360* spectrometer (IH, 60 **MHz),** *Bruker WH-YO* spectrometer with *Fourier* transform **('H,** YO MHz; I3C, 22.63 **MHz);** the assignments of the resonances marked with an asterix arc not certain. **MS:** *VG70-250* instrument.

 $(l'R)$ -3'-exo-($N-Methyl-N-phenylcarbamoyloxy$)-2'-exo-bornyl 3-Phenylpropionate (3). A soln. of 3.8 g (12.5 mmol) of **1** and 4.2 g (25 mmol) of 3-phenylpropionyl chloride [2c] in 36 ml of CC1, was kept for 8 h at 80". After removal of the solvent and purification by column chromatography (AcOEt/pentane 15:85), 4.7 g (87%) of **3** was obtained as an oil. Spectra: [2c].

¹) These results indicate that a potassium (Z)-enolate derived from **2** could be selectively oxidized to the (2R)-isomer after addition of $K($ sec-BuO). Attempts with $K(i-Pr)$ ₂N/Li(t-BuO) failed. We obtained predominantly the (ZS)-isomer in poor yield.

²) The side reaction(s) could be an aldol reaction of the sulfonylimine with the ester enolate [6].

(I' R)-3'- exo- *i* N- *Methy[- N-phenylcarbamoyloxy)-2'-exo-bornyl2-Hydroxy-3-phenylpropionnte (4). General Procedure for the Hydroxylation of 3.* A soln. of LICA (2 mmol) was prepared by adding 1.3 ml of 1.5 μ BuLi (hexane) to 0.37 ml of N-isopropylcyclohexylamine in 3 ml of THF at 0". After stirring for 5 min, the LICA soh. was cooled to -78° . In cases, in which 3 was deprotonated in the presence of HMPT, 2 ml of HMPT were added. A soh. of 436 mg (1 mmol) of **3** in 5 ml of THF was added within **3** min. After 35 min, the enolate was warmed up to the desired temp. In cases, in which HMPT was added after the ester deprotonation, the mixture was diluted with 2 ml of HMPT. After 2-3 min, 651 mg (1.5 mmol) MoOPH were added to the soln. within a few seconds. The reaction was quenched in 8 ml of 2N HCl and 10 ml of $E₂O$ by shaking at r.t. after having analyzed some samples by HPLC (AcOEt/pentane 1:9). The org. layer was diluted with 15 ml of Et₂O, washed twice with 20 ml of H₂O, and dried. After removal of the solvent, the crude product was separated by careful column chromatography (AcOEt/pentane 1 :9).

(2S)-Isomer 4a. 'H-NMR (60 MHz, CDCI,/D,O): 0.7,0.8,0.9 **(3&3** CH,); 0.7- 2.0 *(m,* 5 H ofbornyl); 2.3-3.2 *(AB of ABX, 8 signals, 2 H-C(3)); 3.25 <i>(s, CH₃N); 4.1-4.4 <i>(X of ABX, 4 signals, H-C(2))*; 4.9 *(s, H-C(2')*, $H-C(3')$; 7.15 (2s, 2 Ph).

 $(2R)$ -Isomer 4b. ¹H-NMR (60 MHz, CDCI₃/D₂O): 0.7–2.0 *(m,* 14 H of bornyl); 2.6–3.0 *(AB of ABX, 8* signals, 2 H-C(3)); 3.25 *(s, CH₃N)*; 3.7–4.0 *(Xof ABX, 4 signals, H-C(2))*; 4.8 *(AB, J(2',3')* = 7, H-C(2'), H-C(3')); 7.25 **(s,** 2 Ph).

/2S)-2-Hydroxy-3-phenylpropionic Acid (5a)jrom 4a. To a soln. of 190 mg (0.42 mmol) of *4a* in 10 ml of MeOH, 1.1 g KOH in 10 ml MeOH/H₂O 1:1 were added. After 5 h, the MeOH was removed and 10 ml of H₂O were added. The H₂O layer was extracted twice with 25 ml of Et₂O. They contained 70 ml of bornane-2,3-diol. The H₂O phase was acidified with conc. HC1 and removed under reduced pressure. The residue was washed **3** times with 15 ml of Et₂O and the Et₂O soln. dried. After removal of the solvent, 57 mg (81 %) of **5a** were obtained. $[\alpha]_0^{20} = -29.8^\circ$ (acetone, $c = 1.1$; [11]: -28.1° (acetone, $c = 1.1$)). ¹H-NMR (60 MHz, (D_6) acetone): 2.7-3.4 (*AB* of *ABX*, 8 signals, 2 H–C(3)); 4.3–4.6 *(X* of *ABX*, 4 signals, H–C(2)); 7.3 *(s,* 5 Ph).

(2R)-2-Hydroxy-3-phenylpropionic Acid(5b)from 4b. A soh. of 79 mg (0.17 mmol) *4b* in MeOH was treated as described for **4a.** After workup, 29 mg of bornane-2,3-diol and 26 mg of **5b** (93%) were obtained. $[\alpha]_D^{20} = +27.1^\circ$ $(\text{acetone}, c = 1.1)^{1}H\text{-NMR}: cf. 5a.$

(I' R) -3'-exo-[N-Benzenesu[fonyl- N-j3.5-dimethylphenyl)amino]-2'-exo-bornyl 3-Phenylpropionate (6). A) A soh. of 6 g (14.5 mmol) of **2** and 2.7 g (16 mmol) of 3-phenylpropionyl chloride [2c] in 20 ml of CCI, was kept for 5 hat 80". After removal of the solvent and purification of the residue by column chromatography (AcOEt/pentane 10:90) 3.9 g (50%) of **6** were obtained. IR(CC1,): u.a. 2980,2865, 1745, 1360, 1170, 1070,910,705,600. 'H-NMR (60 MHz, CDCI,): 0.5-1.8 *(m,* 5 H of bornyl); 0.55, 0.7, 0.8 **(3s, 3** CH?); I .9-2.3 (br. **s,** (CH,),Ph); 2.5-3.2 *(AIB2,* 2 H-C(2), 2 H-C(3)); 3.75 *(d,* J(2',3') = 7, H-C(3')); 5.15 *(d,* J(2',3') = 7, H-C(2')); 5.8-7.5 *(m.* 3 H, *(CH,),Ph);* 7,15 (s, 5 H, Ph); 7.25 (s, 5 H, Ph). ¹³C-NMR (22.63 MHz, CDCl₃): 11.2 *(q, 1* = 345); 20.8 *(q, 1* = 256); 21.0 *(q, 1*) *I* = 575); 21.2 *(q, I* = 515); 27.7* *(t, C*(5')); 30.9* *(t, C*(3')); 32.2* *(t, C*(6')); 36.1* *(t, C*(2)); 47.3* *(s, C*(1') od. *C*(7')); 48.7 *(4 C(4'));* 50.1* **(s,** C(7') od. C(1')); 67.5 *(d,* **C(3'));** 81.1 *(d,* C(2')); 126.0 *(I* = 307. Ar); 128.1 *(I* = 696, Ar); 128.3 *(1* = 2323, Ar); 129.2 *(I* =477, **Ar);** 129.6 *(I* = 731, Ar); 132.4 *(I* = 324, **Ar);** 137.5 *(I* = 829, Ar); 139.2 *(I* = 275, Ar); 141.1 *(I* = 250, Ar); 172.0 (s, C(1)). CI-MS: u.a. 546 (27, *M* + + I), 407 (43), 406 (loo), 405 (73), 396 (19),274(11),256(14).

B) **A** mixture of 2.85 *g* (12 mmol) of **3-phenyl-S-(2'pyridyI)thiopropionate** (prepared in 90-95% yield according to $[12]$), 4.7 g (11.4 mmol) of **2** and 2.7 g (12 mmol) of CuBr₂ were stirred in 40 ml of CH₃CN for 3 h at 60° . The mixture was filtered through cotton wool and washed with 50 ml of CH₂Cl₂. The green mixture was diluted with 300 ml of CH_2Cl_2/H_2O 1:2. The org. layer was washed with 100 ml of H_2O and dried. After evaporation, the residue was filtered through 30 g of silica gel. The crude product yielded, after purification by column chromatography (AcOEt/pentane 1 *:9),* 5.3 g (85%) of **6.**

il'R)-3'-exo-~N-Benzene,sulfonyl-N-(3,5-dimethylphenyl)amino]-2'-exo-hornyl 2-Hydroxy-3-phenylpropionate (7). *A*) General Procedure for the Experiments of Table 1. A soln. of 1 mmol of Li(i-Pr)₂N was prepared by adding 0.77 ml of 1.3M BuLi (hexane) to 0.14 ml of $(i-Pr)_{2}NH$ in 3 ml of THF at 0°. After stirring for 5 min, the Li(i-Pr)₂N soln. was cooled to -78° . (KHMDS was prepared according to [13] in THF, and the 1.8m soln. was stored at 0°.) In cases, in which 6 was deprotonated in the presence of HMPT, 2 ml of HMPT were added. The soln. of 273 mg (0.5 mmol) of **6** in 5 **rnl** of THF were added during **3** min. After 35 min, the enolate was warmed up to the desired temp. In cases, in which HMPT was added after ester deprotonation the mixture was diluted with 2 ml of HMPT. After 2-3 niin, 330 mg (0.75 mmol) of MoOPH were added to the soln. within a few seconds. The reaction was quenched in 8 ml of 2N HCl and 10 ml of Et₂O by shaking at r.t. after having analyzed some samples by HPLC (AcOEt/pentane 1:9). The org. layer was diluted with another 15 ml of Et₂O, washed twice with 20 ml of H₂O, and

dried. After removal of the solvent, the crude product was separated by careful column chromatography (AcOEt/ pentane 1:9).

(2S)-Isomer 7a. IR (KBr): u.a. 3500, 2960, 2935, 1740, 1450, 1350, 1170, 1090, 720, 705, 605. 'H-NMR (90 MHz, CDC13/D20): 0.6, 0.8, 0.95 (3s, 3 CH,); 0.5-2.4 (m, 5 H of bornyl); 2.1 (br. **s,** (CH,),Ph); 3.0-3.6 *(AB* of ABX, 8 signals, 2 H–C (3)); 3.95 (d, $J(2',3') = 5$, H–C (3')); 4.6–4.75 (X of ABX, 4 signals, H–C (2)); 5.3 (d, $J(2',3') = 5$, H–C (2')); 5.6–5.85 (m, 1 H, (CH₃)₂Ph); 6.8 (s, 1H, (CH₃)₂Ph); 6.8–7.6 (m, 11 H, (CH₃)₂Ph, Ph). I3C-NMR (22.63 MHz, CDCI,): 11.2 *(4. I* = 11 I); 20.7 *(4, I* = 99); 21.0 *(q, I* = 194); 21.3 *(4, I* = 86); 27.7. *(1,* '35')); 32.2* *(I.* C(6')); 40.3* *(1,* C(3)); 47.3 **(s, C(1')** or C(7')); 48.7 (d, *C(4'));* 50.5* **(s,** C(7') or C(1')); 67.8 *(d,* C(3')); 72.5 *(d, C(2))*; 82.6 *(d, C(2')*); 126.3 *(I* = 106, Ar); 128.2 *(I* = 717, Ar); 129.5 *(I* = 179, Ar); 129.7 *(I* = 249, Ar); 132.6 *(I* = 98, Ar); 137.2 *(I* = 69), Ar); 137.7 *(I* = 113, Ar); 138.3 *(I* = 73, Ar); 138.4 *(I* = 79, Ar); 173.1 **(3,** C(1)). CI-MS: **u.** a. 562 (12, *M+* + I), 422 (39), 421 (71), 397 (1 I), 396 (38), 300 (22), 257 (19), 256 (loo), 255 (75), 254(17), 122 (15).

(2Rl-lsomer **7b.** Mp. 132-133.5", after recrystallization from hexane. IR(KBr): **u.** a. 3520,2960,2930, 1740, 1450, 1350, 1170, 1090,720,705,605. 'H-NMR (90 MHz, CDC1, D20): 0.65,0.8, 1.0 **(3.7,** 3 CH,); 0.7-2.5 *(m. 5* H of bornyl, $(CH_3)_2$ Ph); 2.85-3.6 (*AB* von *ABX*, 8 signals, 2 H–C (3)); 3.95 (*d*, *J*(2',3') = 5, H–C(3')); 4.65-4.8 (*X* of ABX, 4 signals, H-C(2)); 5.25 (d, $J(2',3') = 5$, H-C(2')); 5.6-5.9 (m, 1 H, (CH₃)₂Ph); 6.8 (s, 1 H, (CH₃)₂Ph); 6.8-7.7 **(m, 11 H,** $(CH_1)_2Ph$ **, Ph).** ¹³C-NMR (22.63 MHz, CDCI₁): 11.3 (*q, 1* = 185); 20.8 (*q, 1* = 187); 21.1 (*q*, *I* = 340); 21.4(*q*, *I* = 177); 27.7* (*t*, C(5')); 32.3 * (*t*, C(6')); 40.2(*t*, C(3)); 47.5* (*s*); 48.7(*d*, C(4')); 50.4* (*s*); 67.7(*d*, C(3')); 72.2 *(d,* C(2)); 82.9 (d, **C(2'));** 126.5 *(I* = 183, Ar); 128.2 *(I* = 1461, Ar); 128.4 *(I* = 508, Ar); 129.5 *(I* = 618, Ar); 129.7 *(I* = 146, Ar); 130.0 *(I* = 106, Ar); 132.6 *(I* = 180, Ar); 137.4 *(I* = 144, Ar); 137.7 *(I* = 231, Ar); 138.2 *(I* = 134, Ar); 138.8 *(I* = 139, Ar); 173.9 **(s,** C(1)). CI-MS: u.a. 562 (1 **1,** *M'* + I), 423 (12), 422 (51), 421 (74), 405 (19), 404 (46), 397 (17), 396 (60), 301 (1 I), 300 (29), 274 (13), 273 (IS), 272 (16), 257 (19), 256 (loo), 255 *(89),* 254 (19). 135 (18), 122(12).

8) General Procedurefor the Experiments ofTable 2 *(e.g.* Exper.8). To a soln. of 2.8 ml *(5* mmol) **of** 1.801 KHMDS in 3 ml of THF at -78", 273 mg (0.5 mmol) of *6* in 5 ml THF were added during 2 min. Immediately afterwards, 296 mg (4 mmol) of sec-BuOH in 2ml of THF were followed. After 35 min, the enolate was allowed to warm up to the desired temp. (usually -52°), and 330 mg (0.75 mmol) of MoOPH were added within a few seconds. The mixture was treated as described for Procedure A.

(2S)-2-Hydroxy-3-phenylpropionic Acid (5a) from **7a.** To a soln. of 119 mg (0.21 mmol) **of** 7a in **7** ml of MeOH, 1 g of KOH in 5 ml of MeOH/H₂O 1:1 was added. After 7 h, MeOH was removed and 10 ml of H₂O were added. The aq. layer was extracted twice with 25 ml of Et₂O. The Et₂O extracts yielded 80 mg of 2 (92%). The H₂O soln. was acidified with conc. HCl and evaporated under reduced pressure. The residue was washed 3 times with 10 ml of Et₂O. The Et₂O was dried and after removal of the solvent 25 mg (74%) of 5a were obtained. $\{\alpha\}_{0}^{20} = -28.3^{\circ}$ (acetone, $c = 0.6$).

(2RJ-2-Hydroxy-3-phenylpropionic Acid (5b)from 7b. To a soln. of 100 mg (0.178 mmol) of 7b in 7 ml of MeOH, 1 g of KOH in 5 ml of MeOH/H₂O 1:1 were added. After 9 h, the mixture was treated as described for 7a. After workup 71 mg of 2 (97%) and 24 mg (83%) of 5b were obtained. $[\alpha]_0^{20} = +27.1^{\circ}$ (acetone, $c = 0.7$).

REFERENCES

- [1] R. Gamboni, P. Mohr, N. Waespe-Šarčević, Ch. Tamm, Tetrahedron Lett. 1985, 26, 203.
- [2] a) G. Helmchen, R. Schmierer, *Angew.* Chern. 1981,93, 208; b) R. Schmierer, **G.** Grotemeier, **G.** Helmchen, A. Selim, ibid. 1981,93,209; c) R. Schmierer, Doktorarbeit, Universitat Stuttgart, 1980; d) **G.** Helmchen, A. Selim, D. Dorsch, J. Taufer, Tetrahedron Lett. 1983, 23, 3213.
- [3] W. Oppolzer, Ch. Chapuis, G. M. Dao, D. Reichlin, Th. Godel, Tetrahedron Lett. 1982, 23, 4781.
- [4] E. Vedejs, *J.* Am. Chem. *Soc.* 1974,96, 5944; E. Vedejs, D. A. Engler, **J.** E. Telschow, *J. Org.* Chem. 1978,43, 188.
- [5] W. Oppolzer, P. Dudfield, Helu. Chim. Acta **1985,** 68, 216.
- [6] D.A. Evans, **M.** M. Morrissey, R.L. Dorrow, *J.* Am. Chem. *Soc.* 1985,107,4346.
- [7] F.A. Davis, L.C. Vishwakarma, Tetrahedron Lett. 1985,26,3539.
- [8] Presented in part by Ch. Tamm at the 'International Symposium on Organic Chemistry of Medicinal Natural Products (IUPAC)', November 10-14, 1985, Shanghai, China.
- [9] LHMDS forms the (E)-enolate, *cJ* R. E. Ireland, J. **P.** Daub, *J.* Org. Chem. 1981,46,479.
- [lo] F. A. Davis, L.C. Vishwakarma, C. Billmers, J.M. Finn, *J.* Org. *Chem.* 1984,49, 3241.
- [I I] Beilstein **E** IV, 10,653.
- [I21 E.J. Corey, K. C. Nicolaou, *J.* Am. Chem. *Soc.* 1974,96, 5614.
- [13] C.A. Brown, *J. Org. Chem.* 1974, 39, 3913.